Synapsin function in GABA-ergic interneurons is required for short-term olfactory habituation.
نویسندگان
چکیده
In Drosophila, short-term (STH) and long-term habituation (LTH) of olfactory avoidance behavior are believed to arise from the selective potentiation of GABAergic synapses between multiglomerular local circuit interneurons (LNs) and projection neurons in the antennal lobe. However, the underlying mechanisms remain poorly understood. Here, we show that synapsin (syn) function is necessary for STH and that syn(97)-null mutant defects in STH can be rescued by syn(+) cDNA expression solely in the LN1 subset of GABAergic local interneurons. As synapsin is a synaptic vesicle-clustering phosphoprotein, these observations identify a presynaptic mechanism for STH as well as the inhibitory interneurons in which this mechanism is deployed. Serine residues 6 and/or 533, potential kinase target sites of synapsin, are necessary for synapsin function suggesting that synapsin phosphorylation is essential for STH. Consistently, biochemical analyses using a phospho-synapsin-specific antiserum show that synapsin is a target of Ca(2+) calmodulin-dependent kinase II (CaMKII) phosphorylation in vivo. Additional behavioral and genetic observations demonstrate that CaMKII function is necessary in LNs for STH. Together, these data support a model in which CaMKII-mediated synapsin phosphorylation in LNs induces synaptic vesicle mobilization and thereby presynaptic facilitation of GABA release that underlies olfactory STH. Finally, the striking observation that LTH occurs normally in syn(97) mutants indicates that signaling pathways for STH and LTH diverge upstream of synapsin function in GABAergic interneurons.
منابع مشابه
Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae.
Naive Drosophila larvae show vigorous chemotaxis toward many odorants including ethyl acetate (EA). Chemotaxis toward EA is substantially reduced after a 5-min pre-exposure to the odorant and recovers with a half-time of ∼20 min. An analogous behavioral decrement can be induced without odorant-receptor activation through channelrhodopsin-based, direct photoexcitation of odorant sensory neurons ...
متن کاملPlasticity of local GABAergic interneurons drives olfactory habituation.
Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. B...
متن کاملPlasticity of recurrent inhibition in the Drosophila antennal lobe.
Recurrent inhibition, wherein excitatory principal neurons stimulate inhibitory interneurons that feedback on the same principal cells, occurs ubiquitously in the brain. However, the regulation and function of recurrent inhibition are poorly understood in terms of the contributing interneuron subtypes as well as their effect on neural and cognitive outputs. In the Drosophila olfactory system, o...
متن کاملOlfactory habituation: fresh insights from flies.
H abituation, the reduction in an animal’s response to the repeated occurrence of an unchanging stimulus, is generally regarded as the simplest form of learning (1). Moreover, it is ubiquitous: every animal with a nervous system seems to possess the capacity for habituation (2). Given these facts, one might expect that habituation would be fairly well understood by modern neurobiologists. In re...
متن کاملImportance of newly generated neurons in the adult olfactory bulb for odor discrimination.
In adult rodents, neurons are continually generated in the subventricular zone of the forebrain, from where they migrate tangentially toward the olfactory bulb, the only known target for these neuronal precursors. Within the main olfactory bulb, they ascend radially into the granule and periglomerular cell layers, where they differentiate mainly into local interneurons. The functional consequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 42 شماره
صفحات -
تاریخ انتشار 2013